728x90

데이터분석 4

파이썬 - Pandas 기초 정리(DataFrame - 2)

이전 게시물에 이어서 학습을 진행한다. 데이터를 분석하여 예측을 하기 위해서는 예측하는 데이터와 어떤 컬럼이 관계가 깊은지 알아야 한다. 이런 경우에 알아보는 것 중 하나가 "상관계수" 이다. 상관계수는 -1 ~ 1 사이의 숫자이다. 예를 들어 A 컬럼과 B 컬럼의 상관계수를 알아봤을 때 1에 가깝다면 A가 증가할 때 B 가 증가하는 형태를 이룬다고 볼 수 있고, -1 에 가깝다면 A가 증가할 때 B는 감소하는 추세를 보인다고 볼 수 있다. 만약 0에 가깝다면 A 와 B는 별로 관계가 없다는 것을 깨달을 수 있다. 1. 상관계수 알아보기 import pandas as pd import matplotlib.pyplot as plt import seaborn as sns %matplotlib inline 상..

파이썬 - Pandas 기초 정리(DataFrame - 1)

Pandas 모듈에서 가장 많이 사용되는 것이 DataFrame 이라 해도 과언이 아니다. 저번 게시물에서는 Series(1차원)을 다루었지만 이번에는 DataFrame(2차원)을 다룬다. DataFrame 2차원(row, column) 으로 구성되어 있음 일반적인 데이터(csv 등)가 이런 형식으로 되어 있음 1. DataFrame 만들기 일반적으로 DataFrame 은 key 와 value 로 이루어져 있다. data = {10:['a', 'e', 'f'], 20:['b', 'o', 'q'], 30:['c', 'z', 's']} data_frame = pd.DataFrame(data, index=np.arange(1,4)) data_frame --------------------------------..

선형대수 기초 : 행렬과 행렬식 / 벡터

행렬과 행렬식 영행렬 : 모든 성분이 0인 행렬 전치행렬 : 행과 열이 바뀐 행렬 대칭행렬 : 기본행렬과 전치행렬이 같은 행렬 정사각행렬 : 행, 열의 개수가 같은 행렬 단위행렬 : 모든 대각 성분이 1이고, 그 외는 0인 행렬 행렬식 정사각행렬 A를 하나의 수로써 대응시키는 함수 det A = |A| 역행렬 필기 참조 벡터와 좌표계 평번벡터 : 2차원에서 크기와 방향을 모두 표현하는 도구 공간벡터 : 3차원에서 크기와 방향을 모두 표현하는 도구 벡터의 연산 노름 : 벡터의 크기(길이)라고도 하며 노름이 1인 벡터를 단위벡터라 한다. 선형결합 : 벡터의 덧셈과 뺄셈 / 실수배 / 스칼라곱 / 벡터곱

[Python] 일표본 t 검정(One sample t-test)

일표본 t 검정을 공부하기에 앞서 가설검정에 대해 알아보겠다. ※ 가설검정이란? 모집단에 대한 입장(주장)에 대해 표본을 추출하여 수집된 데이터에 근거하여 그 입장(주장)이 맞다고 할 수 있는지를 통계적으로 검정하는 것이다. 가설에는 "귀무가설" 과 "대립가설" 이 있다. 귀무가설(歸無假說; Null hypothesis) : 모집단에 대한 기존의 생각(입장) 대립가설(對立假說; alternative hypothesis) : 귀무가설과 다른 새로운 생각(입장) 표본의 데이터를 근거로 귀무가설과 대립가설 중에서 하나를 선택하는 과정이 가설검정이다. import scipy.stats as stats # 분석에 필요한 라이브러리 ♪ 일표본 t 검정(One sample t-test) - 한 개의 모집단을 이루고 ..